1,871 research outputs found

    Rationale of using different biological therapies in rheumatoid arthritis

    Get PDF
    Due to ongoing developments of novel agents in the field of biological pharmacotherapy, there are now more arrows available in clinicians' quivers for the treatment of rheumatic conditions. As a consequence, however, clear treatment strategies have to be defined in order to guarantee a qualitatively high and individually stage-adapted, state-of-the-art regimen for affected patients. This review summarizes recent evidence regarding the rationale of using different biological therapies to treat rheumatoid arthritis, the most common inflammatory joint disorder after activated osteoarthritis, and draws an actual picture of a possible standardized therapeutic algorithm without claiming exclusive appropriateness

    Effects of long-term high CO<sub>2</sub> exposure on two species of coccolithophores

    Get PDF
    The physiological performance of two coccolithophore species, Emiliania huxleyi and Coccolithus braarudii, was investigated during long-term exposure to elevated pCO2 levels. Mono-specific cultures were grown over 152 (E. huxleyi) and 65 (C. braarudii) generations while pCO2 was gradually increased to maximum levels of 1150 μatm (E. huxleyi) and 930 μatm (C. braarudii) and kept constant thereafter. Rates of cell growth and cell quotas of particulate organic carbon (POC), particulate inorganic carbon (PIC) and total particulate nitrogen (TPN) were determined repeatedly throughout the incubation period. Increasing pCO2 caused a decrease in cell growth rate of 9% and 29% in E. huxleyi and C. braarudii, respectively. In both species cellular PIC:TPN and PIC:POC ratios decreased in response to rising pCO2, whereas no change was observed in the POC:TPN ratios of E. huxleyi and C. braarudii. These results are consistent with those obtained in shorter-term high CO2 exposure experiments following abrupt pertubations of the seawater carbonate system and indicate that for the strains tested here a gradual CO2 increase does not alleviate CO2/pH sensitivity

    Renormalization of the chiral pion-nucleon Lagrangian beyond next-to-leading order

    Get PDF
    The complete renormalization of the generating functional for Green functions of quark currents between one-nucleon states in two flavor heavy baryon chiral perturbation theory is performed to order q4q^4. We show how the heat kernel method has to be extended for operators orthogonal to the heavy fermion four-velocity. A method is developed to treat the multi-coincidence limit arising from insertions of dimension two (and higher) operators on internal baryon propagators in self-energy graphs. As examples, we study the divergences in the isoscalar magnetic moment and the scalar form factor of the nucleon

    Developments in the synovial biology field 2006

    Get PDF
    Synovial pathophysiology is a complex and synergistic interplay of different cell populations with tissue components, mediated by a variety of signaling mechanisms. All of these mechanisms drive the affected joint into inflammation and drive the subsequent destruction of cartilage and bone. Each cell type contributes significantly to the initiation and perpetuation of this deleterious concert, especially in rheumatoid arthritis. Rheumatoid arthritis synovial fibroblasts and macrophages, both cell types with pivotal roles in inflammation and destruction, but also T cells and B cells are crucial for complex network in the inflamed synovium. An even more complex cellular crosstalk between these key players maintains a process of chronic inflammation. As outlined in the present review, in the past year substantial progress has been made to elucidate further details of the rich pathophysiology of rheumatoid arthritis, which may also facilitate the identification of novel targets for future therapeutic strategies
    corecore